EconPapers    
Economics at your fingertips  
 

Giant ultrafast photo-induced shear strain in ferroelectric BiFeO3

Mariusz Lejman, Gwenaelle Vaudel, Ingrid C. Infante, Pascale Gemeiner, Vitalyi E. Gusev, Brahim Dkhil () and Pascal Ruello ()
Additional contact information
Mariusz Lejman: Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine
Gwenaelle Vaudel: Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine
Ingrid C. Infante: Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, Ecole Centrale Paris
Pascale Gemeiner: Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, Ecole Centrale Paris
Vitalyi E. Gusev: Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613, Université du Maine
Brahim Dkhil: Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, Ecole Centrale Paris
Pascal Ruello: Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine

Nature Communications, 2014, vol. 5, issue 1, 1-7

Abstract: Abstract Generation of strain using light is a key issue for future development of ultrasonic devices. Up to now, photo-induced GHz–THz acoustic phonons have been mainly explored in metals and semiconductors, and in artificial nanostructures to enhance their phononic emission. However, despite their inherent strong polarization (providing natural asymmetry) and superior piezoelectric properties, ferroelectric oxides have been only poorly regarded. Here, by using ultrafast optical pump–probe measurements, we show that photogeneration/photodetection of coherent phonons in BiFeO3 ferroelectric leads, at room temperature, to the largest intensity ratio ever reported of GHz transverse acoustic wave versus the longitudinal one. It is found that the major mechanism involved corresponds to screening of the internal electric fields by light-induced charges, which in turn induces stress by inverse piezoelectric effect. This giant opto-acoustic response opens new perspectives for the use of ferroelectric oxides in ultrahigh frequency acoustic devices and the development of new GHz–THz acoustic sources.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms5301 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5301

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5301

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5301