Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis
Madhumitha Nandakumar,
Carl Nathan and
Kyu Y. Rhee ()
Additional contact information
Madhumitha Nandakumar: Weill Cornell Medical College
Carl Nathan: Weill Cornell Medical College
Kyu Y. Rhee: Weill Cornell Medical College
Nature Communications, 2014, vol. 5, issue 1, 1-10
Abstract:
Abstract Mycobacterium tuberculosis (Mtb) is a persistent intracellular pathogen intrinsically tolerant to most antibiotics. However, the specific factors that mediate this tolerance remain incompletely defined. Here we apply metabolomic profiling to discover a common set of metabolic changes associated with the activities of three clinically used tuberculosis drugs, isoniazid, rifampicin and streptomycin. Despite targeting diverse cellular processes, all three drugs trigger activation of Mtb’s isocitrate lyases (ICLs), metabolic enzymes commonly assumed to be involved in replenishing of tricarboxylic acid (TCA) cycle intermediates. We further show that ICL-deficient Mtb strains are significantly more susceptible than wild-type Mtb to all three antibiotics, and that this susceptibility can be chemically rescued when Mtb is co-incubated with an antioxidant. These results identify a previously undescribed role for Mtb’s ICLs in antioxidant defense as a mechanism of antibiotic tolerance.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/ncomms5306 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5306
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5306
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().