Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria
Paul Carini,
Angelicque E. White,
Emily O. Campbell and
Stephen J. Giovannoni ()
Additional contact information
Paul Carini: Oregon State University
Angelicque E. White: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
Emily O. Campbell: Oregon State University
Stephen J. Giovannoni: Oregon State University
Nature Communications, 2014, vol. 5, issue 1, 1-7
Abstract:
Abstract The oxygenated surface waters of the world’s oceans are supersaturated with methane relative to the atmosphere, a phenomenon termed the ‘marine methane paradox’. The production of methylphosphonic acid (MPn) by marine archaea related to Nitrosopumilus maritimus and subsequent decomposition of MPn by phosphate-starved bacterioplankton may partially explain the excess methane in surface waters. Here we show that Pelagibacterales sp. strain HTCC7211, an isolate of the SAR11 clade of marine α-proteobacteria, produces methane from MPn, stoichiometric to phosphorus consumption, when starved for phosphate. Gene transcripts encoding phosphonate transport and hydrolysis proteins are upregulated under phosphate limitation, suggesting a genetic basis for the methanogenic phenotype. Strain HTCC7211 can also use 2-aminoethylphosphonate and assorted phosphate esters for phosphorus nutrition. Despite strain-specific differences in phosphorus utilization, these findings identify Pelagibacterales bacteria as a source of biogenic methane and further implicate phosphate starvation of chemoheterotrophic bacteria in the long-observed methane supersaturation in oxygenated waters.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms5346 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5346
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5346
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().