EconPapers    
Economics at your fingertips  
 

Stabilizing colloidal crystals by leveraging void distributions

Nathan A. Mahynski, Athanassios Z. Panagiotopoulos (), Dong Meng and Sanat K. Kumar
Additional contact information
Nathan A. Mahynski: Princeton University
Athanassios Z. Panagiotopoulos: Princeton University
Dong Meng: Columbia University
Sanat K. Kumar: Columbia University

Nature Communications, 2014, vol. 5, issue 1, 1-8

Abstract: Abstract Colloids often crystallize into polymorphic structures, which are only separated by marginal differences in free energy. Due to this fact, the face-centred cubic and hexagonal close-packed hard-sphere morphologies, for example, usually crystallize simultaneously from a supersaturated solution. The resulting lack of long-range order in these polymorphic structures has been a significant barrier to the widespread application of these crystals in, for instance, photonic bandgap materials. Here, we report a simple method to stabilize one out of two competing polymorphs by exploiting the fact that they have significantly different spatial distributions of voids. We use a variety of polymeric additives whose geometries can be tuned such that their entropy loss, which is related to crystal void symmetries, is different in the two competing polymorphs. This, in turn, controls which polymorph is most thermodynamically stable, providing a generalizable means to stabilize a selected crystal polymorph from a suite of competing structures.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms5472 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5472

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5472

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5472