EconPapers    
Economics at your fingertips  
 

Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites

Marek Piliarik and Vahid Sandoghdar ()
Additional contact information
Marek Piliarik: Max Planck Institute for the Science of Light
Vahid Sandoghdar: Max Planck Institute for the Science of Light

Nature Communications, 2014, vol. 5, issue 1, 1-8

Abstract: Abstract Detection of single analyte molecules without the use of any label would improve the sensitivity of current biosensors by orders of magnitude to the ultimate graininess of biological matter. Over two decades, scientists have succeeded in pushing the limits of optical detection to single molecules using fluorescence. However, restrictions in photophysics and labelling protocols make this technique less attractive for biosensing. Recently, mechanisms based on vibrational spectroscopy, photothermal detection, plasmonics and microcavities have been explored for fluorescence-free detection of single biomolecules. Here, we show that interferometric detection of scattering (iSCAT) can achieve this goal in a direct and label-free fashion. In particular, we demonstrate detection of cancer marker proteins in buffer solution and in the presence of other abundant proteins. Furthermore, we present super-resolution imaging of protein binding with nanometer localization precision. The ease of iSCAT instrumentation promises a breakthrough for label-free studies of interactions involving proteins and other small biomolecules.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.nature.com/articles/ncomms5495 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5495

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5495

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5495