EconPapers    
Economics at your fingertips  
 

In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy

Jiajun Wang, Yu-chen Karen Chen-Wiegart and Jun Wang ()
Additional contact information
Jiajun Wang: Photon Sciences Directorate, Brookhaven National Laboratory
Yu-chen Karen Chen-Wiegart: Photon Sciences Directorate, Brookhaven National Laboratory
Jun Wang: Photon Sciences Directorate, Brookhaven National Laboratory

Nature Communications, 2014, vol. 5, issue 1, 1-10

Abstract: Abstract The delithiation reaction in lithium ion batteries is often accompanied by an electrochemically driven phase transformation process. Tracking the phase transformation process at nanoscale resolution during battery operation provides invaluable information for tailoring the kinetic barrier to optimize the physical and electrochemical properties of battery materials. Here, using hard X-ray microscopy—which offers nanoscale resolution and deep penetration of the material, and takes advantage of the elemental and chemical sensitivity—we develop an in operando approach to track the dynamic phase transformation process in olivine-type lithium iron phosphate at two size scales: a multiple-particle scale to reveal a rate-dependent intercalation pathway through the entire electrode and a single-particle scale to disclose the intraparticle two-phase coexistence mechanism. These findings uncover the underlying two-phase mechanism on the intraparticle scale and the inhomogeneous charge distribution on the multiple-particle scale. This in operando approach opens up unique opportunities for advancing high-performance energy materials.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/ncomms5570 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5570

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5570

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5570