Quantum-to-continuum prediction of ductility loss in aluminium–magnesium alloys due to dynamic strain aging
S. M. Keralavarma (),
A. F. Bower and
W. A. Curtin
Additional contact information
S. M. Keralavarma: Indian Institute of Technology Madras
A. F. Bower: School of Engineering, Brown University
W. A. Curtin: Institute of Mechanical Engineering, Ecole Polytechnique Federale de Lausanne
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Negative strain-rate sensitivity due to dynamic strain aging in Aluminium–5XXX alloys leads to reduced ductility and plastic instabilities at room temperature, inhibiting application of these alloys in many forming processes. Here a hierarchical multiscale model is presented that uses (i) quantum and atomic information on solute energies and motion around a dislocation core, (ii) dislocation models to predict the effects of solutes on dislocation motion through a dislocation forest, (iii) a thermo-kinetic constitutive model that faithfully includes the atomistic and dislocation scale mechanisms and (iv) a finite-element implementation, to predict the ductility as a function of temperature and strain rate in AA5182. The model, which contains no significant adjustable parameters, predicts the observed steep drop in ductility at room temperature, which can be directly attributed to the atomistic aging mechanism. On the basis of quantum inputs, this multiscale theory can be used in the future to design new alloys with higher ductility.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5604 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5604
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5604
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().