Physical autocatalysis driven by a bond-forming thiol–ene reaction
Andrew J. Bissette,
Barbara Odell and
Stephen P. Fletcher ()
Additional contact information
Andrew J. Bissette: Chemistry Research Laboratory, University of Oxford
Barbara Odell: Chemistry Research Laboratory, University of Oxford
Stephen P. Fletcher: Chemistry Research Laboratory, University of Oxford
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Autocatalysis has been extensively studied because it is central to the propagation of living systems. Chemical systems which self-reproduce like living cells would offer insight into principles underlying biology and its emergence from inanimate matter. Protocellular models feature a surfactant boundary, providing compartmentalization in the form of a micelle or vesicle and any model of the emergence of cellular life must account for the appearance, and evolution of, such boundaries. Here, we describe an autocatalytic system where two relatively simple components combine to form a more complex product. The reaction products aggregate into micelles that catalyse molecular self-reproduction. Study of the reaction kinetics and aggregation behaviour suggests a mechanism involving micelle-mediated physical autocatalysis and led to the rational design of a second-generation system. These reactions are driven by irreversible bond formation and provide a working model for the autocatalytic formation of protocells from the coupling of two simple molecular components.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms5607 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5607
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5607
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().