Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana
Eduardo Sánchez-Bermejo,
Gabriel Castrillo,
Bárbara del Llano,
Cristina Navarro,
Sonia Zarco-Fernández,
Dannys Jorge Martinez-Herrera,
Yolanda Leo-del Puerto,
Riansares Muñoz,
Carmen Cámara,
Javier Paz-Ares,
Carlos Alonso-Blanco and
Antonio Leyva ()
Additional contact information
Eduardo Sánchez-Bermejo: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Gabriel Castrillo: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Bárbara del Llano: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Cristina Navarro: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Sonia Zarco-Fernández: School of Chemical Sciences, Universidad Complutense de Madrid
Dannys Jorge Martinez-Herrera: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Yolanda Leo-del Puerto: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Riansares Muñoz: School of Chemical Sciences, Universidad Complutense de Madrid
Carmen Cámara: School of Chemical Sciences, Universidad Complutense de Madrid
Javier Paz-Ares: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Carlos Alonso-Blanco: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Antonio Leyva: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco
Nature Communications, 2014, vol. 5, issue 1, 1-9
Abstract:
Abstract The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth’s history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5617 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5617
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5617
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().