Spatial-temporal model for silencing of the mitotic spindle assembly checkpoint
Jing Chen and
Jian Liu ()
Additional contact information
Jing Chen: National Heart, Lung and Blood Institute, National Institutes of Health
Jian Liu: National Heart, Lung and Blood Institute, National Institutes of Health
Nature Communications, 2014, vol. 5, issue 1, 1-13
Abstract:
Abstract The spindle assembly checkpoint arrests mitotic progression until each kinetochore secures a stable attachment to the spindle. Despite fluctuating noise, this checkpoint remains robust and remarkably sensitive to even a single unattached kinetochore among many attached kinetochores; moreover, the checkpoint is silenced only after the final kinetochore-spindle attachment. Experimental observations have shown that checkpoint components stream from attached kinetochores along microtubules towards spindle poles. Here we incorporate this streaming behaviour into a theoretical model that accounts for the robustness of checkpoint silencing. Poleward streams are integrated at spindle poles, but are diverted by any unattached kinetochore; consequently, accumulation of checkpoint components at spindle poles increases markedly only when every kinetochore is properly attached. This step change robustly triggers checkpoint silencing after, and only after, the final kinetochore-spindle attachment. Our model offers a conceptual framework that highlights the role of spatiotemporal regulation in mitotic spindle checkpoint signalling and fidelity of chromosome segregation.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms5795 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5795
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5795
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().