Impurity-band transport in organic spin valves
Z. G. Yu ()
Additional contact information
Z. G. Yu: SRI International, 333 Ravenswood Avenue
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract The central phenomenon in the field of organic spintronics is the large magnetoresistance in thick organic spin valves. A prerequisite for understanding the magnetoresistance is a reliable description of the device resistance, or the I-V characteristics. Here I show that the observed I-V characteristics in the organic spin valves is incompatible with charge injection into the organic’s lowest unoccupied molecular orbital or highest occupied molecular orbital but can be explained by electrons tunnelling into a broad impurity band located in the gap between these molecular orbitals. Voltage drop takes place mainly across depletion layers at the two electrode/organic interfaces, giving rise to electrode-limited charge transport. Spin-dependent electron tunnelling into the impurity band from the ferromagnetic electrodes results in spin accumulations inside the organic, which rapidly diffuses through the organic primarily via the exchange between impurity-band electrons. This picture explains the major magnetoresistance features and predicts enhanced capacitance in these devices.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5842 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5842
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5842
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().