EconPapers    
Economics at your fingertips  
 

Correlated electron–hole plasma in organometal perovskites

Michele Saba, Michele Cadelano, Daniela Marongiu, Feipeng Chen, Valerio Sarritzu, Nicola Sestu, Cristiana Figus, Mauro Aresti, Roberto Piras, Alessandra Geddo Lehmann, Carla Cannas, Anna Musinu, Francesco Quochi, Andrea Mura and Giovanni Bongiovanni ()
Additional contact information
Michele Saba: Università degli Studi di Cagliari
Michele Cadelano: Università degli Studi di Cagliari
Daniela Marongiu: Università degli Studi di Cagliari
Feipeng Chen: Università degli Studi di Cagliari
Valerio Sarritzu: Università degli Studi di Cagliari
Nicola Sestu: Università degli Studi di Cagliari
Cristiana Figus: Università degli Studi di Cagliari
Mauro Aresti: Università degli Studi di Cagliari
Roberto Piras: Università degli Studi di Cagliari
Alessandra Geddo Lehmann: Università degli Studi di Cagliari
Carla Cannas: Università degli Studi di Cagliari
Anna Musinu: Università degli Studi di Cagliari
Francesco Quochi: Università degli Studi di Cagliari
Andrea Mura: Università degli Studi di Cagliari
Giovanni Bongiovanni: Università degli Studi di Cagliari

Nature Communications, 2014, vol. 5, issue 1, 1-10

Abstract: Abstract Organic–inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron–hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms6049 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6049

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms6049

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6049