EconPapers    
Economics at your fingertips  
 

Creation of skyrmions and antiskyrmions by local heating

Wataru Koshibae () and Naoto Nagaosa ()
Additional contact information
Wataru Koshibae: RIKEN Center for Emergent Matter Science (CEMS)
Naoto Nagaosa: RIKEN Center for Emergent Matter Science (CEMS)

Nature Communications, 2014, vol. 5, issue 1, 1-11

Abstract: Abstract Heating a system usually increases entropy and destroys order. However, there are also cases where heating gives a system the energy to overcome the potential barrier to reach a state with a nontrivial ordered pattern. Whether heating can manipulate the topological nature of the system is especially important. Here, we theoretically show by microsimulation that local heating can create topological magnetic textures, skyrmions, in a ferromagnetic background of chiral magnets and dipolar magnets. The resulting states depend sharply on intensity and spot size of heating, as well as the interaction to stabilize the skyrmions. Typically, the creation process is completed within 0.1 ns and 10 nm at the shortest time and smallest size, and these values can be longer and larger according to the choice of system. This finding will lead to the creation of skyrmions at will, which constitutes an important step towards their application to memory devices.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/ncomms6148 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6148

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms6148

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6148