Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system
U. Tutsch (),
B. Wolf,
S. Wessel,
L. Postulka,
Y. Tsui,
H.O. Jeschke,
I. Opahle,
T. Saha-Dasgupta,
R. Valentí,
A. Brühl,
K. Remović-Langer,
T. Kretz,
H.-W. Lerner,
M. Wagner and
M. Lang
Additional contact information
U. Tutsch: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
B. Wolf: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
S. Wessel: Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen Universität
L. Postulka: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
Y. Tsui: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
H.O. Jeschke: Institut für Theoretische Physik, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
I. Opahle: ICAMS, Ruhr-Universität Bochum
T. Saha-Dasgupta: S.N. Bose National Centre for Basic Sciences
R. Valentí: Institut für Theoretische Physik, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
A. Brühl: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
K. Remović-Langer: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
T. Kretz: Institut für Anorganische Chemie, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
H.-W. Lerner: Institut für Anorganische Chemie, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
M. Wagner: Institut für Anorganische Chemie, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
M. Lang: Physikalisches Institut, Goethe-Universität, SFB/TR49, Frankfurt(M) 60438, Germany
Nature Communications, 2014, vol. 5, issue 1, 1-9
Abstract:
Abstract Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex–antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S=½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms6169 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6169
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms6169
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().