Fundamental rate-loss tradeoff for optical quantum key distribution
Masahiro Takeoka (),
Saikat Guha and
Mark M. Wilde
Additional contact information
Masahiro Takeoka: National Institute of Information and Communications Technology
Saikat Guha: Quantum Information Processing Group, Raytheon BBN Technologies
Mark M. Wilde: Center for Computation and Technology, Hearne Institute for Theoretical Physics, Louisiana State University
Nature Communications, 2014, vol. 5, issue 1, 1-7
Abstract:
Abstract Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels—a long-standing open problem in optical quantum information theory—and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/ncomms6235 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6235
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms6235
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().