EconPapers    
Economics at your fingertips  
 

Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions

Rohit Soni, Adrian Petraru, Paul Meuffels, Ondrej Vavra, Martin Ziegler, Seong Keun Kim, Doo Seok Jeong (), Nikolay A. Pertsev () and Hermann Kohlstedt ()
Additional contact information
Rohit Soni: Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel
Adrian Petraru: Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel
Paul Meuffels: Peter Grünberg Institut, Forschungszentrum Jülich GmbH
Ondrej Vavra: Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel
Martin Ziegler: Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel
Seong Keun Kim: Electronic Materials Research Centre, Korea Institute of Science and Technology
Doo Seok Jeong: Electronic Materials Research Centre, Korea Institute of Science and Technology
Nikolay A. Pertsev: A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences and St. Petersburg State Polytechnical University
Hermann Kohlstedt: Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel

Nature Communications, 2014, vol. 5, issue 1, 1-10

Abstract: Abstract Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical (‘redox’-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO3 barrier, La0.7Sr0.3MnO3 bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms6414 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6414

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms6414

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6414