Ultrastable cellulosome-adhesion complex tightens under load
Constantin Schoeler,
Klara H. Malinowska,
Rafael C. Bernardi,
Lukas F. Milles,
Markus A. Jobst,
Ellis Durner,
Wolfgang Ott,
Daniel B. Fried,
Edward A. Bayer,
Klaus Schulten,
Hermann E. Gaub and
Michael A. Nash ()
Additional contact information
Constantin Schoeler: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Klara H. Malinowska: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Rafael C. Bernardi: Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
Lukas F. Milles: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Markus A. Jobst: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Ellis Durner: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Wolfgang Ott: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Daniel B. Fried: The Weizmann Institute of Science
Edward A. Bayer: The Weizmann Institute of Science
Klaus Schulten: Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
Hermann E. Gaub: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Michael A. Nash: Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms6635 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6635
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms6635
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().