EconPapers    
Economics at your fingertips  
 

Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

Knut Müller (), Florian F. Krause, Armand Béché, Marco Schowalter, Vincent Galioit, Stefan Löffler, Johan Verbeeck, Josef Zweck, Peter Schattschneider and Andreas Rosenauer
Additional contact information
Knut Müller: Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1
Florian F. Krause: Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1
Armand Béché: EMAT, University of Antwerp
Marco Schowalter: Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1
Vincent Galioit: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Stefan Löffler: Institute of Solid State Physics, Vienna University of Technology
Johan Verbeeck: EMAT, University of Antwerp
Josef Zweck: Institut für Experimentelle und Angewandte Physik, Universität Regensburg
Peter Schattschneider: Institute of Solid State Physics, Vienna University of Technology
Andreas Rosenauer: Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1

Nature Communications, 2014, vol. 5, issue 1, 1-8

Abstract: Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms6653 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6653

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms6653

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6653