Manifestation of unconventional biexciton states in quantum dots
Gerald Hönig (),
Gordon Callsen,
Andrei Schliwa,
Stefan Kalinowski,
Christian Kindel,
Satoshi Kako,
Yasuhiko Arakawa,
Dieter Bimberg and
Axel Hoffmann
Additional contact information
Gerald Hönig: Institut für Festkörperphysik, Technische Universität Berlin
Gordon Callsen: Institut für Festkörperphysik, Technische Universität Berlin
Andrei Schliwa: Institut für Festkörperphysik, Technische Universität Berlin
Stefan Kalinowski: Institut für Festkörperphysik, Technische Universität Berlin
Christian Kindel: Institut für Festkörperphysik, Technische Universität Berlin
Satoshi Kako: Institute of Industrial Science, University of Tokyo
Yasuhiko Arakawa: Institute of Industrial Science, University of Tokyo
Dieter Bimberg: Institut für Festkörperphysik, Technische Universität Berlin
Axel Hoffmann: Institut für Festkörperphysik, Technische Universität Berlin
Nature Communications, 2014, vol. 5, issue 1, 1-7
Abstract:
Abstract Although semiconductor excitons consist of a fermionic subsystem (electron and hole), they carry an integer net spin similar to Cooper-electron-pairs. While the latter cause superconductivity by forming a Bose–Einstein-condensate, excitonic condensation is impeded by, for example, a fast radiative decay of the electron-hole pairs. Here, we investigate the behaviour of two electron-hole pairs in a quantum dot with wurtzite crystal structure evoking a charge carrier separation on the basis of large spontaneous and piezoelectric polarizations, thus reducing carrier overlap and consequently decay probabilities. As a direct consequence, we find a hybrid-biexciton complex with a water molecule-like charge distribution enabling anomalous spin configurations. In contrast to the conventional-biexciton complex with a net spin of s=0, the hybrid-biexciton exhibits s=±3, leading to completely different photoluminescence signatures in addition to drastically enhanced charge carrier-binding energies. Consequently, the biexcitonic cascade via the dark exciton can be enhanced on the rise of temperature as approved by photon cross-correlation measurements.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms6721 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6721
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms6721
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().