EconPapers    
Economics at your fingertips  
 

Steric engineering of metal-halide perovskites with tunable optical band gaps

Marina R. Filip, Giles E. Eperon, Henry J. Snaith and Feliciano Giustino ()
Additional contact information
Marina R. Filip: University of Oxford, Parks Road
Giles E. Eperon: University of Oxford, Clarendon Laboratory, Parks Road
Henry J. Snaith: University of Oxford, Clarendon Laboratory, Parks Road
Feliciano Giustino: University of Oxford, Parks Road

Nature Communications, 2014, vol. 5, issue 1, 1-9

Abstract: Abstract Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal–halide–metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/ncomms6757 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6757

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms6757

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6757