Widom line and dynamical crossovers as routes to understand supercritical water
P. Gallo (),
D. Corradini and
M. Rovere
Additional contact information
P. Gallo: Universita’ Roma Tre
D. Corradini: Boston University
M. Rovere: Universita’ Roma Tre
Nature Communications, 2014, vol. 5, issue 1, 1-6
Abstract:
Abstract Supercritical water is fundamental in many fields of applications and a precise characterization of the supercritical state is of uttermost importance for this liquid. In a fluid, when moving from the critical point into the single-phase region, the thermodynamic response functions show maxima reminiscent of the critical divergence. Here we study the thermodynamic properties of water in the supercritical region by analysing both available experimental data and our computer simulation results. We find that the lines connecting the maxima of the response functions converge on approaching the critical point in a single line, the Widom line. We further show that the Widom line coincides with a crossover from a liquid-like to a gas-like behaviour clearly visible in the transport properties. These thermodynamic and dynamic features show that the supercritical state in water is far more complex than what was so far believed, indicating a new perspective in the characterization of the thermodynamics of this state.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/ncomms6806 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6806
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms6806
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().