Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures
A. Gamucci,
D. Spirito,
M. Carrega,
B. Karmakar,
A. Lombardo,
M. Bruna,
L. N. Pfeiffer,
K. W. West,
A. C. Ferrari,
M. Polini () and
V. Pellegrini ()
Additional contact information
A. Gamucci: National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze-Consiglio Nazionale delle Ricerche and Scuola Normale Superiore
D. Spirito: National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze-Consiglio Nazionale delle Ricerche and Scuola Normale Superiore
M. Carrega: National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze-Consiglio Nazionale delle Ricerche and Scuola Normale Superiore
B. Karmakar: National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze-Consiglio Nazionale delle Ricerche and Scuola Normale Superiore
A. Lombardo: Cambridge Graphene Centre, University of Cambridge
M. Bruna: Cambridge Graphene Centre, University of Cambridge
L. N. Pfeiffer: Princeton University
K. W. West: Princeton University
A. C. Ferrari: Cambridge Graphene Centre, University of Cambridge
M. Polini: National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze-Consiglio Nazionale delle Ricerche and Scuola Normale Superiore
V. Pellegrini: National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze-Consiglio Nazionale delle Ricerche and Scuola Normale Superiore
Nature Communications, 2014, vol. 5, issue 1, 1-7
Abstract:
Abstract Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron–hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms6824 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6824
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms6824
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().