EconPapers    
Economics at your fingertips  
 

Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas

Lauriane Chomaz (), Laura Corman, Tom Bienaimé, Rémi Desbuquois, Christof Weitenberg, Sylvain Nascimbène, Jérôme Beugnon and Jean Dalibard
Additional contact information
Lauriane Chomaz: Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités
Laura Corman: Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités
Tom Bienaimé: Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités
Rémi Desbuquois: Institute for Quantum Electronics, ETH Zurich
Christof Weitenberg: Institut für Laserphysik, Universität Hamburg
Sylvain Nascimbène: Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités
Jérôme Beugnon: Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités
Jean Dalibard: Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités

Nature Communications, 2015, vol. 6, issue 1, 1-10

Abstract: Abstract Phase transitions are ubiquitous in our three-dimensional world. By contrast, most conventional transitions do not occur in infinite uniform low-dimensional systems because of the increased role of thermal fluctuations. The crossover between these situations constitutes an important issue, dramatically illustrated by Bose-Einstein condensation: a gas strongly confined along one direction of space may condense along this direction without exhibiting true long-range order in the perpendicular plane. Here we explore transverse condensation for an atomic gas confined in a novel trapping geometry, with a flat in-plane bottom, and we relate it to the onset of an extended (yet of finite-range) in-plane coherence. By quench crossing the transition, we observe topological defects with a mean number satisfying the universal scaling law predicted by Kibble-Zurek mechanism. The approach described can be extended to investigate the topological phase transitions that take place in planar quantum fluids.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms7162 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7162

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms7162

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7162