Hierarchical structural design for fracture resistance in the shell of the pteropod Clio pyramidata
Ling Li (),
James C. Weaver and
Christine Ortiz ()
Additional contact information
Ling Li: Massachusetts Institute of Technology
James C. Weaver: Wyss Institute for Biologically Inspired Engineering, Harvard University
Christine Ortiz: Massachusetts Institute of Technology
Nature Communications, 2015, vol. 6, issue 1, 1-10
Abstract:
Abstract The thecosomes are a group of planktonic pteropods with thin, 1 mm-sized aragonitic shells, which are known to possess a unique helical microstructure consisting of interlocking nanofibres. Here we investigate the detailed hierarchical structural and mechanical design of the pteropod Clio pyramidata. We quantify and elucidate the macroscopic distribution of the helical structure over the entire shell (~1 mm), the structural characteristics of the helical assembly (~10–100 μm), the anisotropic cross-sectional geometry of the fibrous building blocks (~0.5–10 μm) and the heterogeneous distribution of intracrystalline organic inclusions within individual fibres (
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms7216 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7216
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7216
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().