Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications
Minseok Kim,
Dogyeong Ha and
Taesung Kim ()
Additional contact information
Minseok Kim: Ulsan National Institute of Science and Technology (UNIST)
Dogyeong Ha: Ulsan National Institute of Science and Technology (UNIST)
Taesung Kim: Ulsan National Institute of Science and Technology (UNIST)
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract Cracks are observed in many environments, including walls, dried wood and even the Earth’s crust, and are often thought of as an unavoidable, unwanted phenomenon. Recent research advances have demonstrated the the ability to use cracks to produce various micro and nanoscale patterns. However, patterns are usually limited by the chosen substrate material and the applied tensile stresses. Here we describe an innovative cracking-assisted nanofabrication technique that relies only on a standard photolithography process. This novel technique produces well-controlled nanopatterns in any desired shape and in a variety of geometric dimensions, over large areas and with a high throughput. In addition, we show that mixed-scale patterns fabricated using the ‘crack-photolithography’ technique can be used as master moulds for replicating numerous nanofluidic devices via soft lithography, which to the best of our knowledge is a technique that has not been reported in previous studies on materials’ mechanical failure, including cracking.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms7247 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7247
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7247
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().