EconPapers    
Economics at your fingertips  
 

KCNQ5 K+ channels control hippocampal synaptic inhibition and fast network oscillations

Pawel Fidzinski, Tatiana Korotkova, Matthias Heidenreich, Nikolaus Maier, Sebastian Schuetze, Oliver Kobler, Werner Zuschratter, Dietmar Schmitz, Alexey Ponomarenko () and Thomas J. Jentsch ()
Additional contact information
Pawel Fidzinski: Leibniz-Institut für Molekulare Pharmakologie (FMP)
Tatiana Korotkova: Leibniz-Institut für Molekulare Pharmakologie (FMP)
Matthias Heidenreich: Leibniz-Institut für Molekulare Pharmakologie (FMP)
Nikolaus Maier: Neurowissenschaftliches Forschungszentrum, Charité Universitätsmedizin
Sebastian Schuetze: Leibniz-Institut für Molekulare Pharmakologie (FMP)
Oliver Kobler: Leibniz-Institut für Neurobiologie (LIN)
Werner Zuschratter: Leibniz-Institut für Neurobiologie (LIN)
Dietmar Schmitz: NeuroCure Cluster of Excellence, Charité Universitätsmedizin
Alexey Ponomarenko: Leibniz-Institut für Molekulare Pharmakologie (FMP)
Thomas J. Jentsch: Leibniz-Institut für Molekulare Pharmakologie (FMP)

Nature Communications, 2015, vol. 6, issue 1, 1-13

Abstract: Abstract KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) K+ channels dampen neuronal excitability and their functional impairment may lead to epilepsy. Less is known about KCNQ5 (Kv7.5), which also displays wide expression in the brain. Here we show an unexpected role of KCNQ5 in dampening synaptic inhibition and shaping network synchronization in the hippocampus. KCNQ5 localizes to the postsynaptic site of inhibitory synapses on pyramidal cells and in interneurons. Kcnq5dn/dn mice lacking functional KCNQ5 channels display increased excitability of different classes of interneurons, enhanced phasic and tonic inhibition, and decreased electrical shunting of inhibitory postsynaptic currents. In vivo, loss of KCNQ5 function leads to reduced fast (gamma and ripple) hippocampal oscillations, altered gamma-rhythmic discharge of pyramidal cells and impaired spatial representations. Our work demonstrates that KCNQ5 controls excitability and function of hippocampal networks through modulation of synaptic inhibition.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms7254 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7254

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms7254

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7254