Nutritional stress induces exchange of cell material and energetic coupling between bacterial species
Saida Benomar,
David Ranava,
María Luz Cárdenas,
Eric Trably,
Yan Rafrafi,
Adrien Ducret,
Jérôme Hamelin,
Elisabeth Lojou,
Jean-Philippe Steyer and
Marie-Thérèse Giudici-Orticoni ()
Additional contact information
Saida Benomar: Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille Université
David Ranava: Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille Université
María Luz Cárdenas: Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille Université
Eric Trably: INRA, UR050, Laboratoire de Biotechnologie de l'Environnement
Yan Rafrafi: INRA, UR050, Laboratoire de Biotechnologie de l'Environnement
Adrien Ducret: Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille Université
Jérôme Hamelin: INRA, UR050, Laboratoire de Biotechnologie de l'Environnement
Elisabeth Lojou: Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille Université
Jean-Philippe Steyer: INRA, UR050, Laboratoire de Biotechnologie de l'Environnement
Marie-Thérèse Giudici-Orticoni: Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille Université
Nature Communications, 2015, vol. 6, issue 1, 1-10
Abstract:
Abstract Knowledge of the behaviour of bacterial communities is crucial for understanding biogeochemical cycles and developing environmental biotechnology. Here we demonstrate the formation of an artificial consortium between two anaerobic bacteria, Clostridium acetobutylicum (Gram-positive) and Desulfovibrio vulgaris Hildenborough (Gram-negative, sulfate-reducing) in which physical interactions between the two partners induce emergent properties. Molecular and cellular approaches show that tight cell–cell interactions are associated with an exchange of molecules, including proteins, which allows the growth of one partner (D. vulgaris) in spite of the shortage of nutrients. This physical interaction induces changes in expression of two genes encoding enzymes at the pyruvate crossroads, with concomitant changes in the distribution of metabolic fluxes, and allows a substantial increase in hydrogen production without requiring genetic engineering. The stress induced by the shortage of nutrients of D. vulgaris appears to trigger the interaction.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms7283 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7283
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7283
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().