Phonon hydrodynamics in two-dimensional materials
Andrea Cepellotti,
Giorgia Fugallo,
Lorenzo Paulatto,
Michele Lazzeri,
Francesco Mauri () and
Nicola Marzari ()
Additional contact information
Andrea Cepellotti: Theory and Simulations of Materials (THEOS), École Polytechnique Fédérale de Lausanne
Giorgia Fugallo: Theory and Simulations of Materials (THEOS), École Polytechnique Fédérale de Lausanne
Lorenzo Paulatto: Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités, UPMC University Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206
Michele Lazzeri: Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités, UPMC University Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206
Francesco Mauri: Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités, UPMC University Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206
Nicola Marzari: Theory and Simulations of Materials (THEOS), École Polytechnique Fédérale de Lausanne
Nature Communications, 2015, vol. 6, issue 1, 1-7
Abstract:
Abstract The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms7400 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7400
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7400
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().