Methane hydrate formation in confined nanospace can surpass nature
Mirian E. Casco,
Joaquín Silvestre-Albero (),
Anibal J. Ramírez-Cuesta,
Fernando Rey,
Jose L. Jordá,
Atul Bansode,
Atsushi Urakawa,
Inma Peral,
Manuel Martínez-Escandell,
Katsumi Kaneko and
Francisco Rodríguez-Reinoso
Additional contact information
Mirian E. Casco: Laboratorio de Materiales Avanzados, Universidad de Alicante
Joaquín Silvestre-Albero: Laboratorio de Materiales Avanzados, Universidad de Alicante
Anibal J. Ramírez-Cuesta: Oak Ridge National Laboratory
Fernando Rey: Instituto de Tecnología Química, Universidad Politécnica de Valencia-CSIC
Jose L. Jordá: Instituto de Tecnología Química, Universidad Politécnica de Valencia-CSIC
Atul Bansode: Institute of Chemical Research of Catalonia (ICIQ)
Atsushi Urakawa: Institute of Chemical Research of Catalonia (ICIQ)
Inma Peral: ALBA Light Source, 08290 Cerdanyola del Vallés
Manuel Martínez-Escandell: Laboratorio de Materiales Avanzados, Universidad de Alicante
Katsumi Kaneko: Research Center for Exotic Nanocarbons, Shinshu University
Francisco Rodríguez-Reinoso: Laboratorio de Materiales Avanzados, Universidad de Alicante
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.5 MPa and 2 °C), with faster kinetics (within minutes) than nature, fully reversibly and with a nominal stoichiometry that mimics nature. The formation of the hydrate structures in nanospace and their similarity to natural hydrates is confirmed using inelastic neutron scattering experiments and synchrotron X-ray powder diffraction. These findings may be a step towards the application of a smart synthesis of methane hydrates in energy-demanding applications (for example, transportation).
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://www.nature.com/articles/ncomms7432 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7432
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7432
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().