EconPapers    
Economics at your fingertips  
 

Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize

Xiang Li, Lin Li and Jianbing Yan ()
Additional contact information
Xiang Li: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University
Lin Li: University of Minnesota
Jianbing Yan: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University

Nature Communications, 2015, vol. 6, issue 1, 1-9

Abstract: Abstract Meiotic recombination drives eukaryotic sexual reproduction and the generation of genome diversity. Tetrad analysis, which examines the four chromatids resulting from a single meiosis, is an ideal method to study the mechanisms of homologous recombination. Here we develop a method to isolate the four microspores from a single tetrad in maize for the purpose of whole-genome sequencing. A high-resolution recombination map reveals that crossovers are unevenly distributed across the genome and are more likely to occur in the genic than intergenic regions, especially common in the 5′- and 3′-end regions of annotated genes. The direct detection of genomic exchanges suggests that conversions likely occur in most crossover tracts. Negative crossover interference and weak chromatid interference are observed at the population level. Overall, our findings further our understanding of meiotic recombination with implications for both basic and applied research.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms7648 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7648

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms7648

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7648