EconPapers    
Economics at your fingertips  
 

Ultrafast and reversible control of the exchange interaction in Mott insulators

J. H. Mentink (), K. Balzer and M. Eckstein
Additional contact information
J. H. Mentink: University of Hamburg-CFEL
K. Balzer: University of Hamburg-CFEL
M. Eckstein: University of Hamburg-CFEL

Nature Communications, 2015, vol. 6, issue 1, 1-8

Abstract: Abstract The strongest interaction between microscopic spins in magnetic materials is the exchange interaction Jex. Therefore, ultrafast control of Jex holds the promise to control spins on ultimately fast timescales. We demonstrate that time-periodic modulation of the electronic structure by electric fields can be used to reversibly control Jex on ultrafast timescales in extended antiferromagnetic Mott insulators. In the regime of weak driving strength, we find that Jex can be enhanced and reduced for frequencies below and above the Mott gap, respectively. Moreover, for strong driving strength, even the sign of Jex can be reversed and we show that this causes time reversal of the associated quantum spin dynamics. These results suggest wide applications, not only to control magnetism in condensed matter systems, for example, via the excitation of spin resonances, but also to assess fundamental questions concerning the reversibility of the quantum many-body dynamics in cold atom systems.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms7708 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7708

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms7708

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7708