Twisting phonons in complex crystals with quasi-one-dimensional substructures
Xi Chen,
Annie Weathers,
Jesús Carrete,
Saikat Mukhopadhyay,
Olivier Delaire (),
Derek A. Stewart (),
Natalio Mingo (),
Steven N. Girard,
Jie Ma,
Douglas L. Abernathy,
Jiaqiang Yan,
Raman Sheshka,
Daniel P. Sellan,
Fei Meng,
Song Jin,
Jianshi Zhou and
Li Shi ()
Additional contact information
Xi Chen: Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin
Annie Weathers: The University of Texas at Austin
Jesús Carrete: Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, Commissariat à l’Énergie Atomique Grenoble
Saikat Mukhopadhyay: Cornell Nanoscale Facility, Cornell University
Olivier Delaire: Oak Ridge National Laboratory
Derek A. Stewart: Cornell Nanoscale Facility, Cornell University
Natalio Mingo: Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, Commissariat à l’Énergie Atomique Grenoble
Steven N. Girard: University of Wisconsin—Madison
Jie Ma: Oak Ridge National Laboratory
Douglas L. Abernathy: Oak Ridge National Laboratory
Jiaqiang Yan: Oak Ridge National Laboratory
Raman Sheshka: Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, Commissariat à l’Énergie Atomique Grenoble
Daniel P. Sellan: The University of Texas at Austin
Fei Meng: University of Wisconsin—Madison
Song Jin: University of Wisconsin—Madison
Jianshi Zhou: Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin
Li Shi: Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin
Nature Communications, 2015, vol. 6, issue 1, 1-9
Abstract:
Abstract A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms7723 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7723
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7723
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().