Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning
R. Schlesinger,
F. Bianchi,
S. Blumstengel,
C. Christodoulou,
R. Ovsyannikov,
B. Kobin,
K. Moudgil,
S. Barlow,
S. Hecht,
S.R. Marder,
F. Henneberger and
N. Koch ()
Additional contact information
R. Schlesinger: Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin
F. Bianchi: Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin
S. Blumstengel: Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin
C. Christodoulou: Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin
R. Ovsyannikov: Helmholtz Zentrum Berlin für Materialien und Energie GmbH
B. Kobin: Institut für Chemie & IRIS Adlershof, Humboldt-Universität zu Berlin
K. Moudgil: School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
S. Barlow: School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
S. Hecht: Institut für Chemie & IRIS Adlershof, Humboldt-Universität zu Berlin
S.R. Marder: School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology
F. Henneberger: Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin
N. Koch: Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin
Nature Communications, 2015, vol. 6, issue 1, 1-7
Abstract:
Abstract The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure’s energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure’s radiative emission yield sevenfold, validating the relevance of our approach.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms7754 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7754
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms7754
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().