EconPapers    
Economics at your fingertips  
 

Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

F. Lafont, R. Ribeiro-Palau, D. Kazazis, A. Michon, O. Couturaud, C. Consejo, T. Chassagne, M. Zielinski, M. Portail, B. Jouault, F. Schopfer and W. Poirier ()
Additional contact information
F. Lafont: LNE—Laboratoire National de Métrologie et d’Essais
R. Ribeiro-Palau: LNE—Laboratoire National de Métrologie et d’Essais
D. Kazazis: LPN—Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
A. Michon: CRHEA—Centre de Recherche sur l’Hétéroépitaxie et ses Applications, CNRS, rue Bernard Grégory, 06560 Valbonne, France
O. Couturaud: L2C—Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
C. Consejo: L2C—Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
T. Chassagne: NOVASiC, Savoie Technolac
M. Zielinski: NOVASiC, Savoie Technolac
M. Portail: CRHEA—Centre de Recherche sur l’Hétéroépitaxie et ses Applications, CNRS, rue Bernard Grégory, 06560 Valbonne, France
B. Jouault: L2C—Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
F. Schopfer: LNE—Laboratoire National de Métrologie et d’Essais
W. Poirier: LNE—Laboratoire National de Métrologie et d’Essais

Nature Communications, 2015, vol. 6, issue 1, 1-9

Abstract: Abstract Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms7806 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7806

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms7806

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7806