EconPapers    
Economics at your fingertips  
 

High-power multi-megahertz source of waveform-stabilized few-cycle light

O. Pronin (), M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, Th. Udem and F. Krausz
Additional contact information
O. Pronin: Ludwig-Maximilians-Universität München, Fakultät für Physik
M. Seidel: Max-Planck-Institut für Quantenoptik
F. Lücking: Ludwig-Maximilians-Universität München, Fakultät für Physik
J. Brons: Max-Planck-Institut für Quantenoptik
E. Fedulova: Max-Planck-Institut für Quantenoptik
M. Trubetskov: Max-Planck-Institut für Quantenoptik
V. Pervak: Ludwig-Maximilians-Universität München, Fakultät für Physik
A. Apolonski: Ludwig-Maximilians-Universität München, Fakultät für Physik
Th. Udem: Max-Planck-Institut für Quantenoptik
F. Krausz: Ludwig-Maximilians-Universität München, Fakultät für Physik

Nature Communications, 2015, vol. 6, issue 1, 1-6

Abstract: Abstract Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator. A diode-pumped Kerr-lens-mode-locked Yb:YAG thin-disk laser combined with extracavity pulse compression yields waveform-stabilized few-cycle pulses (7.7 fs, 2.2 cycles) with a pulse energy of 0.15 μJ and an average power of 6 W. The demonstrated concept is scalable to pulse energies of several microjoules and near-gigawatt peak powers. The generation of attosecond pulses at the full repetition rate of the oscillator comes into reach. The presented system could serve as a primary source for frequency combs in the mid infrared and vacuum UV with unprecedented high power levels.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms7988 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7988

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms7988

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7988