EconPapers    
Economics at your fingertips  
 

Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator

Guan Wu, Ying Hu, Yang Liu, Jingjing Zhao, Xueli Chen, Vincent Whoehling, Cédric Plesse, Giao T. M. Nguyen, Frédéric Vidal and Wei Chen ()
Additional contact information
Guan Wu: i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences
Ying Hu: i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences
Yang Liu: i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences
Jingjing Zhao: i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences
Xueli Chen: i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences
Vincent Whoehling: Laboratoire de Physicochimie des Polymères et des Interfaces, Institut des Matériaux, Université de Cergy-Pontoise
Cédric Plesse: Laboratoire de Physicochimie des Polymères et des Interfaces, Institut des Matériaux, Université de Cergy-Pontoise
Giao T. M. Nguyen: Laboratoire de Physicochimie des Polymères et des Interfaces, Institut des Matériaux, Université de Cergy-Pontoise
Frédéric Vidal: Laboratoire de Physicochimie des Polymères et des Interfaces, Institut des Matériaux, Université de Cergy-Pontoise
Wei Chen: i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences

Nature Communications, 2015, vol. 6, issue 1, 1-8

Abstract: Abstract Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g−1) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms8258 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8258

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms8258

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8258