Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons
Julie Vérièpe,
Lucresse Fossouo and
J Alex Parker ()
Additional contact information
Julie Vérièpe: CRCHUM
Lucresse Fossouo: CRCHUM
J Alex Parker: CRCHUM
Nature Communications, 2015, vol. 6, issue 1, 1-9
Abstract:
Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease thought to employ cell non-autonomous mechanisms where neuronal injury engages immune responses to influence disease progression. Here we show that the expression of mutant proteins causative for ALS in Caenorhabditis elegans motor neurons induces an innate immune response via TIR-1/Sarm1. Loss of function mutations in tir-1, associated downstream kinases, and the transcription factor atf-7 all suppress motor neuron degeneration. The neurosecretory proteins UNC-13 and UNC-31 are required for induction of the immune response as well as the degeneration of motor neurons. The human orthologue of UNC-13, UNC13A, has been identified as a genetic modifier of survival in ALS, and we provide functional evidence of UNC-13/UNC13A in regulating motor neuron degeneration. We propose that the innate immune system reacts to the presence of mutant proteins as a contagion, recruiting a pathogen resistance response that is ultimately harmful and drives progressive neurodegeneration.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms8319 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8319
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms8319
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().