Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites
Yinglu Tang,
Riley Hanus,
Sinn-wen Chen and
G. Jeffrey Snyder ()
Additional contact information
Yinglu Tang: California Institute of Technology
Riley Hanus: Northwestern University
Sinn-wen Chen: National Tsing Hua University
G. Jeffrey Snyder: Northwestern University
Nature Communications, 2015, vol. 6, issue 1, 1-7
Abstract:
Abstract CoSb3-based filled skutterudite has emerged as one of the most viable candidates for thermoelectric applications in automotive industry. However, the scale-up commercialization of such materials is still a challenge due to the scarcity and cost of constituent elements. Here we study Ce, the most earth abundant and low-cost rare earth element as a single-filling element and demonstrate that, by solubility design using a phase diagram approach, the filling fraction limit (FFL) x in CexCo4Sb12 can be increased more than twice the amount reported previously (x=0.09). This ultra-high FFL (x=0.20) enables the optimization of carrier concentration such that no additional filling elements are needed to produce a state of the art n-type skutterudite material with a zT value of 1.3 at 850 K before nano-structuring. The earth abundance and low cost of Ce would potentially facilitate a widespread application of skutterudites.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms8584 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8584
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms8584
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().