Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography
M. Gschrey,
A. Thoma,
P. Schnauber,
M. Seifried,
R. Schmidt,
B. Wohlfeil,
L. Krüger,
J. -H. Schulze,
T. Heindel,
S. Burger,
F. Schmidt,
A. Strittmatter,
S. Rodt and
S. Reitzenstein ()
Additional contact information
M. Gschrey: Institut für Festkörperphysik, Technische Universität Berlin
A. Thoma: Institut für Festkörperphysik, Technische Universität Berlin
P. Schnauber: Institut für Festkörperphysik, Technische Universität Berlin
M. Seifried: Institut für Festkörperphysik, Technische Universität Berlin
R. Schmidt: Institut für Festkörperphysik, Technische Universität Berlin
B. Wohlfeil: Zuse-Institut Berlin (ZIB)
L. Krüger: Institut für Festkörperphysik, Technische Universität Berlin
J. -H. Schulze: Institut für Festkörperphysik, Technische Universität Berlin
T. Heindel: Institut für Festkörperphysik, Technische Universität Berlin
S. Burger: Zuse-Institut Berlin (ZIB)
F. Schmidt: Zuse-Institut Berlin (ZIB)
A. Strittmatter: Institut für Festkörperphysik, Technische Universität Berlin
S. Rodt: Institut für Festkörperphysik, Technische Universität Berlin
S. Reitzenstein: Institut für Festkörperphysik, Technische Universität Berlin
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms8662 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8662
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms8662
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().