EconPapers    
Economics at your fingertips  
 

Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages

Zhou Xu, Emilie Fallet, Camille Paoletti, Steffen Fehrmann, Gilles Charvin and Maria Teresa Teixeira ()
Additional contact information
Zhou Xu: Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique
Emilie Fallet: Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique
Camille Paoletti: Institut de Génétique et de Biologie Moléculaire et Cellulaire
Steffen Fehrmann: Institut de Génétique et de Biologie Moléculaire et Cellulaire
Gilles Charvin: Institut de Génétique et de Biologie Moléculaire et Cellulaire
Maria Teresa Teixeira: Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique

Nature Communications, 2015, vol. 6, issue 1, 1-10

Abstract: Abstract In eukaryotes, telomeres cap chromosome ends to maintain genomic stability. Failure to maintain telomeres leads to their progressive erosion and eventually triggers replicative senescence, a pathway that protects against unrestricted cell proliferation. However, the mechanisms underlying the variability and dynamics of this pathway are still elusive. Here we use a microfluidics-based live-cell imaging assay to investigate replicative senescence in individual Saccharomyces cerevisiae cell lineages following telomerase inactivation. We characterize two mechanistically distinct routes to senescence. Most lineages undergo an abrupt and irreversible switch from a replicative to an arrested state, consistent with telomeres reaching a critically short length. In contrast, other lineages experience frequent and stochastic reversible arrests, consistent with the repair of accidental telomere damage by Pol32, a subunit of polymerase δ required for break-induced replication and for post-senescence survival. Thus, at the single-cell level, replicative senescence comprises both deterministic cell fates and chaotic cell division dynamics.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms8680 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8680

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms8680

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8680