EconPapers    
Economics at your fingertips  
 

Collisional dynamics in a gas of molecular super-rotors

Yuri Khodorkovsky, Uri Steinitz, Jean-Michel Hartmann and Ilya Sh. Averbukh ()
Additional contact information
Yuri Khodorkovsky: The Weizmann Institute of Science
Uri Steinitz: The Weizmann Institute of Science
Jean-Michel Hartmann: Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) CNRS (UMR 7583), Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace
Ilya Sh. Averbukh: The Weizmann Institute of Science

Nature Communications, 2015, vol. 6, issue 1, 1-6

Abstract: Abstract Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable ‘gyroscopic stage’ in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational–translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the ‘gyroscopic stage’ is abruptly terminated by an explosive rotational–translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms8791 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8791

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms8791

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8791