EconPapers    
Economics at your fingertips  
 

A steep-slope transistor based on abrupt electronic phase transition

Nikhil Shukla, Arun V. Thathachary, Ashish Agrawal, Hanjong Paik, Ahmedullah Aziz, Darrell G. Schlom, Sumeet Kumar Gupta, Roman Engel-Herbert and Suman Datta ()
Additional contact information
Nikhil Shukla: Pennsylvania State University
Arun V. Thathachary: Pennsylvania State University
Ashish Agrawal: Pennsylvania State University
Hanjong Paik: Cornell University
Ahmedullah Aziz: Pennsylvania State University
Darrell G. Schlom: Cornell University
Sumeet Kumar Gupta: Pennsylvania State University
Roman Engel-Herbert: Pennsylvania State University
Suman Datta: Pennsylvania State University

Nature Communications, 2015, vol. 6, issue 1, 1-6

Abstract: Abstract Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (‘sub-kT/q’) and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor’s source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms8812 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8812

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms8812

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8812