Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals
Sotirios Christodoulou,
Fernando Rajadell,
Alberto Casu,
Gianfranco Vaccaro,
Joel Q. Grim,
Alessandro Genovese,
Liberato Manna,
Juan I. Climente,
Francesco Meinardi,
Gabriele Rainò,
Thilo Stöferle,
Rainer F. Mahrt,
Josep Planelles (),
Sergio Brovelli () and
Iwan Moreels ()
Additional contact information
Sotirios Christodoulou: Istituto Italiano di Tecnologia
Fernando Rajadell: Departament de Quimica Fisica i Analitica, Universitat Jaume I
Alberto Casu: Istituto Italiano di Tecnologia
Gianfranco Vaccaro: Università degli Studi di Milano-Bicocca
Joel Q. Grim: Istituto Italiano di Tecnologia
Alessandro Genovese: Istituto Italiano di Tecnologia
Liberato Manna: Istituto Italiano di Tecnologia
Juan I. Climente: Departament de Quimica Fisica i Analitica, Universitat Jaume I
Francesco Meinardi: Università degli Studi di Milano-Bicocca
Gabriele Rainò: IBM Research—Zurich
Thilo Stöferle: IBM Research—Zurich
Rainer F. Mahrt: IBM Research—Zurich
Josep Planelles: Departament de Quimica Fisica i Analitica, Universitat Jaume I
Sergio Brovelli: Università degli Studi di Milano-Bicocca
Iwan Moreels: Istituto Italiano di Tecnologia
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract Strain in colloidal heteronanocrystals with non-centrosymmetric lattices presents a unique opportunity for controlling optoelectronic properties and adds a new degree of freedom to existing wavefunction engineering and doping paradigms. We synthesized wurtzite CdSe nanorods embedded in a thick CdS shell, hereby exploiting the large lattice mismatch between the two domains to generate a compressive strain of the CdSe core and a strong piezoelectric potential along its c-axis. Efficient charge separation results in an indirect ground-state transition with a lifetime of several microseconds, almost one order of magnitude longer than any other CdSe/CdS nanocrystal. Higher excited states recombine radiatively in the nanosecond time range, due to increasingly overlapping excited-state orbitals. k˙p calculations confirm the importance of the anisotropic shape and crystal structure in the buildup of the piezoelectric potential. Strain engineering thus presents an efficient approach to highly tunable single- and multiexciton interactions, driven by a dedicated core/shell nanocrystal design.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms8905 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8905
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms8905
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().