EconPapers    
Economics at your fingertips  
 

The photochemical mechanism of a B12-dependent photoreceptor protein

Roger J. Kutta (), Samantha J. O. Hardman, Linus O. Johannissen, Bruno Bellina, Hanan L. Messiha, Juan Manuel Ortiz-Guerrero, Montserrat Elías-Arnanz, S. Padmanabhan, Perdita Barran, Nigel S. Scrutton and Alex R. Jones ()
Additional contact information
Roger J. Kutta: School of Chemistry, The University of Manchester, Oxford Road
Samantha J. O. Hardman: SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester
Linus O. Johannissen: SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester
Bruno Bellina: School of Chemistry, The University of Manchester, Oxford Road
Hanan L. Messiha: SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester
Juan Manuel Ortiz-Guerrero: Area of Genetics (Unidad Asociada al Instituto de Química Física–Consejo Superior de Investigaciones Científicas), Faculty of Biology, Universidad de Murcia
Montserrat Elías-Arnanz: Area of Genetics (Unidad Asociada al Instituto de Química Física–Consejo Superior de Investigaciones Científicas), Faculty of Biology, Universidad de Murcia
S. Padmanabhan: Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas
Perdita Barran: School of Chemistry, The University of Manchester, Oxford Road
Nigel S. Scrutton: SYNBIOCHEM, Manchester Institute of Biotechnology, The University of Manchester
Alex R. Jones: School of Chemistry, The University of Manchester, Oxford Road

Nature Communications, 2015, vol. 6, issue 1, 1-11

Abstract: Abstract The coenzyme B12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms8907 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8907

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms8907

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8907