High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds
Wiel H. Evers,
Juleon M. Schins,
Michiel Aerts,
Aditya Kulkarni,
Pierre Capiod,
Maxime Berthe,
Bruno Grandidier,
Christophe Delerue,
Herre S. J. van der Zant,
Carlo van Overbeek,
Joep L. Peters,
Daniel Vanmaekelbergh and
Laurens D. A. Siebbeles ()
Additional contact information
Wiel H. Evers: Optoelectronic Materials Section, Delft University of Technology
Juleon M. Schins: Optoelectronic Materials Section, Delft University of Technology
Michiel Aerts: Optoelectronic Materials Section, Delft University of Technology
Aditya Kulkarni: Optoelectronic Materials Section, Delft University of Technology
Pierre Capiod: Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)
Maxime Berthe: Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)
Bruno Grandidier: Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)
Christophe Delerue: Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)
Herre S. J. van der Zant: Kavli Institute of Nanoscience, Delft University of Technology
Carlo van Overbeek: Debye Institute for Nanomaterials Science, University of Utrecht
Joep L. Peters: Debye Institute for Nanomaterials Science, University of Utrecht
Daniel Vanmaekelbergh: Debye Institute for Nanomaterials Science, University of Utrecht
Laurens D. A. Siebbeles: Optoelectronic Materials Section, Delft University of Technology
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150±15 cm2 V−1 s−1 at 0.2 terahertz to 260±15 cm2 V−1 s−1 at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13±2 cm2 V−1 s−1. The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15–290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms9195 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9195
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms9195
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().