Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography
S. Weiß,
D. Lüftner,
T. Ules,
E. M. Reinisch,
H. Kaser,
A. Gottwald,
M. Richter,
S. Soubatch,
G. Koller,
M. G. Ramsey,
F. S. Tautz and
P. Puschnig ()
Additional contact information
S. Weiß: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
D. Lüftner: Institute of Physics, University of Graz, NAWI Graz
T. Ules: Institute of Physics, University of Graz, NAWI Graz
E. M. Reinisch: Institute of Physics, University of Graz, NAWI Graz
H. Kaser: Physikalisch-Technische Bundesanstalt (PTB)
A. Gottwald: Physikalisch-Technische Bundesanstalt (PTB)
M. Richter: Physikalisch-Technische Bundesanstalt (PTB)
S. Soubatch: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
G. Koller: Institute of Physics, University of Graz, NAWI Graz
M. G. Ramsey: Institute of Physics, University of Graz, NAWI Graz
F. S. Tautz: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
P. Puschnig: Institute of Physics, University of Graz, NAWI Graz
Nature Communications, 2015, vol. 6, issue 1, 1-8
Abstract:
Abstract Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms9287 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9287
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms9287
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().