EconPapers    
Economics at your fingertips  
 

Charge-transfer crystallites as molecular electrical dopants

Henry Méndez, Georg Heimel, Stefanie Winkler, Johannes Frisch, Andreas Opitz, Katrein Sauer, Berthold Wegner, Martin Oehzelt, Christian Röthel, Steffen Duhm, Daniel Többens, Norbert Koch and Ingo Salzmann ()
Additional contact information
Henry Méndez: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Georg Heimel: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Stefanie Winkler: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Johannes Frisch: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Andreas Opitz: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Katrein Sauer: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Berthold Wegner: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Martin Oehzelt: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Christian Röthel: Institut für Festkörperphysik, Graz University of Technology
Steffen Duhm: Jiangsu Key Laboratory for Carbon Based Functional Materials and Devices and Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University
Daniel Többens: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH—BESSY II
Norbert Koch: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme
Ingo Salzmann: Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, AG Supramolekulare Systeme

Nature Communications, 2015, vol. 6, issue 1, 1-11

Abstract: Abstract Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms9560 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9560

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms9560

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9560