EconPapers    
Economics at your fingertips  
 

The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation

Boris Laurent, Mathieu Roskosz (), Laurent Remusat, François Robert, Hugues Leroux, Hervé Vezin, Christophe Depecker, Nicolas Nuns and Jean-Marc Lefebvre
Additional contact information
Boris Laurent: UMET, Université Lille 1, CNRS UMR 8207
Mathieu Roskosz: UMET, Université Lille 1, CNRS UMR 8207
Laurent Remusat: IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d'Histoire Naturelle
François Robert: IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d'Histoire Naturelle
Hugues Leroux: UMET, Université Lille 1, CNRS UMR 8207
Hervé Vezin: LASIR, Université de Lille 1, CNRS UMR 8516
Christophe Depecker: UMET, Université Lille 1, CNRS UMR 8207
Nicolas Nuns: Institut M.E. Chevreul, Université de Lille 1, CNRS, FR 2638
Jean-Marc Lefebvre: UMET, Université Lille 1, CNRS UMR 8207

Nature Communications, 2015, vol. 6, issue 1, 1-6

Abstract: Abstract Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of electron irradiation on the hydrogen isotopic composition of organic precursors containing different functional groups. From an initial terrestrial composition, overall D-enrichments and differential intramolecular fractionations comparable with those measured in the Orgueil meteorite were induced. Therefore, ionizing radiation can quantitatively explain the deuteration of organics in some carbonaceous chondrites. For these meteorites, the precursors of the IOM may have had the same isotopic composition as the main water reservoirs of the inner Solar System.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms9567 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9567

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms9567

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9567