Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution
Wentuan Bi,
Xiaogang Li,
Lei Zhang,
Tao Jin,
Lidong Zhang,
Qun Zhang (),
Yi Luo,
Changzheng Wu () and
Yi Xie
Additional contact information
Wentuan Bi: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Xiaogang Li: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Lei Zhang: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Tao Jin: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Lidong Zhang: National Synchrotron Radiation Laboratory, University of Science and Technology of China
Qun Zhang: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Yi Luo: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Changzheng Wu: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Yi Xie: Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Synergetic Innovation Center of Quantum Information and Quantum Physics, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China
Nature Communications, 2015, vol. 6, issue 1, 1-7
Abstract:
Abstract In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles’ heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA−, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms9647 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9647
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms9647
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().