EconPapers    
Economics at your fingertips  
 

Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

Tobias Gehring, Vitus Händchen, Jörg Duhme, Fabian Furrer, Torsten Franz, Christoph Pacher, Reinhard F. Werner and Roman Schnabel ()
Additional contact information
Tobias Gehring: Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), and Institut für Gravitationsphysik Leibniz Universität Hannover
Vitus Händchen: Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), and Institut für Gravitationsphysik Leibniz Universität Hannover
Jörg Duhme: Institut für Theoretische Physik, Leibniz Universität Hannover
Fabian Furrer: Graduate School of Science, University of Tokyo
Torsten Franz: Institut für Theoretische Physik, Leibniz Universität Hannover
Christoph Pacher: AIT Austrian Institute of Technology GmbH, Optical Quantum Technology
Reinhard F. Werner: Institut für Theoretische Physik, Leibniz Universität Hannover
Roman Schnabel: Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), and Institut für Gravitationsphysik Leibniz Universität Hannover

Nature Communications, 2015, vol. 6, issue 1, 1-7

Abstract: Abstract Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/ncomms9795 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9795

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms9795

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9795